
UDC 531.011 

SUFFICIENT CONDITIONS OF OPTIMALITY IN LINEAR PROBLEMS OF 

THE MATHEMATICAL THEORY OF OPTIMAL PRXESSES WITH PHASE 

CONSTRAINTS 

PMM Vol. 42, No. 4, 1978, pp. 623-632 
Iu, P. KRIVENKOV 

(Moscow) 

(Received December 23, 1975) 

Sufficient conditions of optimality in problems of the theory of optimal proc- 

esses with phase constraints are formulated and proved. (see [l ,2]). The 

problem of optimization is analyzed in the regular and singular cases in which 

control functions are expressed in terms of classical and generalized, in the 

meaning of Sobolev-Schwartz functions [3-51, respectively. Optimality cond- 

itions are formulated using systems of conjugate functions that also belong to 
certain classes of functions generalized in the meaning of Sobolev -Schwartz 

ES, 71. 
The latter makes it possible to obtain new forms of definition for conjugate 

functions and to formulate conditions of discxntfnuity, and also to extend 
the class of optimization problems and to simplify the class of conjugate func- 

tions [8-lo]. 
Examples are given from the field of space navigation and of the theory of 

shells, which illustrate the distinctive feactures of the proposed approach [ll]. 

1. Theregul,ar optimal problem. Problem A, Determine 

the n- and k-dimensional vector functions (columns) z (t) and u (t) along segment 
[O, T] that satisfy the condition 

max 
i 
TX(T):% =A~++n+a, z(O) = c, Pu>b, Qx>dj 

where Y and c are constant n- dimensional (row, column)vectors; a, b and d are n-, 
s-, and nr-dimensional vector functions (columns), and A, B, P,and Q are matrix 

functions of t in IO, 2’1 raPectivelY, of orders n x n, n x k, s x k, and 

m x n. 
bet n represent an n-dimensional vector with integral nonnegative components ni, 

and p be a number or a symbol that satisfies the condition 

We introduce in the analysis the space L& 
lap<++“. 

[O, T] of vector functions x (t) of 

dimension n, each of whose components in measurable in [O, I’] and has the ni -th 
derivative generalized in Sobolev’s meaning and belonging to L p (0, T). 

we seek the solution 2 (t) 

LO, Tl, u (t) E L;,p [O, T1 

and u (t) of problem A in the classz (t) E Lz,p 
where ni > 1, and ki = 0 ,and assume 

that for any such 2 (t) and u (t) the inclusions 

A (t)x (t), B (t)u (t), a (t) E L:; [O, T1 

P (0~ (9, b 0) E L:,P [O, TJ; Q (t)x (t), d (t) E L:.p [O, Tl 

659 
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e = (1, 1, . . ., I), S; = 0, ?Tlj > 1 

are valid. 
We assume that the equation dx / dt = Ax + By + a and the inequality Pa 

> b are on the average satisfied. 

2. The rpace of genera 
space D of vector functions (columns) 

entiable components Vi (t), that vanish 

and t = T. 
Let n be a vector of dimension n 

p\< -too* We denote by LE,p LO, 
9 (t) the space of linear functionals 

represented in the form 

n T 

lized function), Let us conside r 

v (0 of dimension n with infinitely differ- 

in some neighborhoods of points t-0 

with integral components ni and 1 6 
Tithe space of generalized vector functions 

(9 (t), n (Q) determinate in D,, and 

-? T 

((p (L), 7J (1)) = c (5 (Pi0 (t) vi (1) dt + c s rpij (t);; vi ct> dt) 
i=l 0 j=10 

where ‘pi0 (t) E L, (0, T) when ni < 0; ‘pi0 (t) E LT& [O, Tl when ni > 0, 
‘pi.’ (t) E L, (0, T) when ‘n5 < 0, and ~pi’ (t) = 0 when ni > 0. 

3. Properties of generalized functions, 

’ If cp (t) E Lg,, [O, Tl and 9 (t) E L&p 
q (t;;, L: p [O, 7’1, 

[O, TJ, then the sumcp (t) + 
where si > max {q, ri} 

* If ‘cp (t) E L” [O, TI and 

is determined. 

A (t) is amatrix function of order n X k 

what Components are “‘Iij (t) E Cn [O, T] then the product ‘p (t)A (t) E LE,, 
[O, Tl, where /Lj a milli {ni}, is determined as 

(‘P @)A (4 7 v (4 = (rp W, A W (4) 

3O If q(t) E Lz,, [0, T], then the derivative drp (t) / dt E LX2 to, Tl 

is determined as 

( 
drp (9 

dt’ 

4O. Each functional (cp (t), u(t)) that determines q(t) E L&JO, T] is 

represented in the form of the sum 
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of functionals (rpi (t), Vi (t)) that determine ‘pi (t) E Ly:, [O, T] and represent 
the i-th coordinates cp (t). 

5O . Each function cp (t) E Lt, p [O, 7’1, where mini {ni} = no < 0, is 
represented by the sum of the regular y” (t) and singular qY (t) components of 

‘p (07 i.e. cp (t) = cpp (t) $ cp” (t). Each coordinate (pi’ Ct) of 

the regular component cpr (t) is of the form 

and on the average can be identified with function ‘pi(O) (t) of that formula, while 

each coordinate ‘pi” (t) of the singular component cp” (t) can be represented 

for ni < 0 in the form 

and be considered as the 
L, (0, T). 

?zi- th generalized derivative of function (-l)n’ @)i (t) E 

6’. If rp (t) E LZ,p IO, Tf and u (t) E Lcs IO, TJ, wheren + m 12 

(0, . . *7 O),~,(P\(S~ 

E LT.1 [O, TJ, 

and q = p / (p - I), the product rp (t)u (t) 
where no = min {mini {a,}, mini {mj}}, is determined 

in the form 

(cp (0 u @)9 v @)I = 
: z (cpi WY 4 P) v CL)) + 

i=l(nqO) 

5 (%(t)tTi(t)v(t)) 
i=l(mQ<O) 

O If cp (t) E L” [O, TJ and u (t) E Lm [O TJ where n -I- m = 

e, ‘1’~ p \( t-00 aldP 4 = p / (p - I), the d~rbdve(rl; dt). (cp (t)~ (t)) 

E L;y [O, TJ with the properties 
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-& (ql (t) u (t)) = q u (t) + cp (q * 

is determined. 

4, Scmiordsrlinessof generalized functions, bet us 

consider in IO, T] n closed sets oi, We assume that the totality of sets {Zi}belongs to 
class Q ,i.e. {wi} E Q if: a) there exists an E > 0 such that for any i ,E 4.1, 
. . ., n> the inclusion oi c [E, T - ~1 is vaUd; bj for any i E (1, . , . , nj 
the internal part of set Zi, i.e. wi = int Oi represents a finite number of isolated 
intervals, and c) the complement oi in Oi, i.e. yi = 55i \ oi can be 

represented in the formYi = ‘J’i- IJ vi+ U yi“, where yi- and vi+ are sets of the 
left- and right- hand ends of intervals belonging to oi, and yi” is the set consist- 
ing of a finite number of points isolated from Oi , 

In the space LZ,, [O, T] of the generalized functions cp (r), we introduce,using 

the set {Qi} E Q the relaticn of semiorderliness cp (t) ‘> 0, and assume that 

Q (t) 5 0 if the following conditions are satisfied. 

‘For any i E {I, . . . , n), for which 

valid in [O, T] in the average when ni 

For any i E {I, . . ., n}, for which 
- I} the inequalities 

(- l)‘$rp<(t) >O in. 

ni >,O, the inequality cpio (t) > 0 is 
= 0 and pointwise when ni > 0 , 

ni > 2 andforany Jo {I,. . ., ni 

Yi-‘7 

[I + (- l)i] $. r&O’ (C) > 0 in Yi’ 

are valid 
For any i ~3 (1, . . ., n}, for which ni < 0, any k E (1, . . . .I --%I, 

and any function v (t) E l,;,kq [O, Tl, and q = p / 0, - 1) that Satisfy the. 

relation u (Q > 0 in that space, the inequality 

T 

s cpik (t) $ u (t) at > 0 
0 

is valid. 
Let us point out some of the properties of introduced relation. 

O. If 

(‘o,..., 
cp (t) E L:, P [O, Tl and u (t) E L& [O, T], where n i- m > 

O), 1<pp+=% q=pI(p-I), ($450 and u (t) 

_s 0 8 
ze. 

then p (t)u (t1 > 0. 
Let a( ) (t - T) E: L:+k [0, T] represent the k-$ derivative of the 6 - 

function at point ‘6. Then the relation c&(k) (t - T) > 0, where cL = const, 

means that a > 0, when k is even a > 0 when 

when r E y+, and a = 0 when r~ y”, if kisodd. 
7Ey-, a<0 

5, Conditions of optfmality for the regular optima- 
11 t y p r 0 b 1 e XII. Let us consider some admissible solutions CC* (t), u* (t) of 
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problem A, which we shall use for determining the totality of sets (G,}, where i E_ 

(1, . * I, n}, in the form Z& = (t : Qi (t)~* (t) - dg (t) = 0}, where Qi (t)s* 
(t) and di (t) are the i-th components of vector functions Q (t)z* (t) and d (t), 

The totality of sets { Gi} is assumed to belong to the Q class, Using the descri- 
bed above procedure we introduce the semiorderliness relations g (G S 0 and 
6 (t) 5 0 , respectively, for thespaces LE,r IO, 2’1 and LiFC, lo, TI, where 

q=pI(p-1)’ Noting that the admissible solutions n* (t) and 
satisfy the relation Q (t)s* (t) 5 d (t), 

u* (t) 
we can say that the admissible solution 

s(t), u(t) of problem A is close to the admissible sohrtion 
respect to semiorderliness QLZ 5 d, if Q(t) J: (t) 5 d (t). 

t* (t), u:$ (t) with 

T h e 0 r e m 1, If for some admissible solution 3* (i!), U* (t) of problem A 
there exist functions 

such that function $ (t) is regular and continuous in the neighborhoods of points 
t = 0 and I = T, and functions $i (t), 8 (t), and 6 (t) satisfy system 

dqrldt ++4+6Q=O, $(T)=y, ~B+EP=O 

E > 0, 6 (t) $z+ 0, e (Pa* - b) -- 0, 6 (Qx* - d) = 0 

then CC* (t), U* (t) is the optimal solution among the admissible solutions of problem 
A that are close to a~* (t), u* (t) with respect to the semiorderliness Qx 5 d. 

Proof, kt us assume that an admissible solution X (t), U (t) which satisfies 
the inequality TX (T) - YX* CT) = 8 > 0 exists in the neighborhood of sdution 
z* (t), u*(t) admissible with respect to the semiorderliness Qx 5 d . For functions 

9 (6 E GT,4 [O, TI and z ft) = a~ (t) - s* (t) E LE,p lo, 2’1 the following 
product is determined: 

-3Z(t)ELFi[O,T] (n* = min,{--ni}) 

Because $7 (t) satisfies the equation --d$/dt= $A+@Q this 
product is equal to *AZ + SQz, which means that theequality 
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Since 

+B + EP = 0, e (Pu* - b) = 0, 6 (Qs* - d) = 0 

dz / dt = As + Bzi (ii (t) = u (t) - u* (t)) 

that equality assumes the form 

- d / dt (qz) = e (Pu - b) + 6 (Qz - d) 

Because e (t) > 0, PU + b > 0,0 (t) >, 0, QZ - d >, 0, the latter equal- 

ity generates the inequality (d / dt) ($37) < 0. 
In conformity with conditions of the theorem function I# (t) is regular in the neigh- 

borhoods [O, o,] and [T - or, T1, where IS, > 0. We take an 

arbitrary IS E (0, a,] and construct function no (t) E D, of the form U, (t) = 

0 in [o, o / 21 and [T - cr / 2, T1, U, (t) = 1 in [(T. T - 01, 
U, (t) = q (2t / o - 1) in 10 / 2, O] ,and 

in [T-CT, T--o/Bl,where 
uo‘(i) = 11 (2 (T - tj / o - Ij 

Then 

M-fexp (- tti~t) jdt>O 
0 

Functions $I (t) and z (t) are continuous in the neighborhood of points t = 0 and 

t = T, hence there exists for any p > 0 a ~a > 0 such that 

4i” (t)Zj, (t) = $i” (0)X2 (O) + E (t), 1 E (t) I < PL, ’ ’ E [O’ ‘,I 

q)i” (t)zi (t) = qfo (T&j (T) + 5 (t), 1 5 (t) 1 B pv b’ t E tT - %, T1 

We select o ;= min {or, (3%) and obtain the inequality 

n 0 T--o/z 

C(S ’ u,(t)& + a 
i=1 CT,2 T-4 

which owing to z (0) = 0 and 9 (0 = Y implies the inequality 

,W)-Sf:( i 50) -&u,(t)& + T-f’2c(t) &v&)dt) 
i=l o/2 T-O 
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Taking into account the estimates 

and selecting p = Me48 / (kz), we obtain the inequality yZ (T) < E / 2 which 
contradicts the previously assumed inequality ~LZ (17’) = E > 0. The theorem is 

proved. 

Example 1, Determine on segment 10, 121 z 0) E +,a IO, 121, Y 0) E 

L, 2’ [0, 121 and u (t) E L,,,” [O, 121 which satisfy the condition 

dx dy 
max xdt: - -y, dt dt - 

-=-LLL, x(0)=0, y(O)=-& iul<l, x<a(t)j 

0 

0 (t) = (f - 10)3(3t - 14) / 64 - 2 

kt us consider the following admissible solutions: ZJ* (t) = 1 in the intervals (2,4) 
and (8, 10); u* (t) = -1 in (0, 2), (4, 8) and (11, 12), and u* (t) = -(d2 / cZt2) a (t) 

in (10, 11). For thestatedproblem and admissible solution the combination of point 
t = 6 and segment [lo, 111 represent the set o ,while the separate points t = 10, 
t = fl,and t = 6 represent, respectively, the sets Y-9 I’: and YO. 

4 8 t 
Fig. 1 

Conditiong (f) = a (t) - x (t) >, 
0 implies that 

The classes of conjugate functions 
are defined as follows: 

cp (f) E L,,Z’ [O,W, 

9 (f) E &,a0 P,W 
&I (i), Es(f) E -ho [0,121, 
s(t) E L,,z-Z [0,121 

and the conjugate system of conditions 
for these functions are of the form 

dipldf = 6 (t) - 1, d+ldf = --cp U), 

cp (12) = o, II, (12) = 0 

II, 0) = e1 0) - &‘A V), 

El @)(I + u* (t)) = 0, 

Es (f)(l - u* (L)) = 0 

6 (f)(a (t) - x* (f)) = 0, El (t) 2 0, 

82 0) > o, 6 (0 5 o 
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If function 4 (f) is of the form 6 It) = 4* (t) +- a6 (t - T) + 88’ (f - 7)~ where 
6” (f) E L,20 W, 421 and Z E y, then condition 6 (t) >, 0 means that: 6* (t) > 0; 
a >,o, and fi >, 0 when T = 10, p B 0 when T = 11 #and p = 0 when T = 6_ 

Using the notation n,’ (t) = 0 (t - a) -- 0 (t -- fi) ywhere 8 (t) is the character- 
istic function of set {f: t > 01, we formulate the solution of the conjugate system 
+i? (t) = TI# (t) + 66 (f - 6) + 6 (t - 10) + 6 (f - 11) - l/%6’ (f - 11) as follows: 
Ip (0 = 3 - t in K4 61, T (0 = 9 - f in (6, 101, ‘P 0) = 0 in (10, ll), 
12-f- I,‘,6 (t - 12) in [ll, 121, $ (f) Tz “1~ (9 -- t)2 - l/z in[O, 6), II, (t) =- (1 
in (lO,Il), ‘II; (t) = l/a (t - 12)’ in (1~,12)~ (see Fig. 1, where a, /3, and Y denote 
the 6- function, the S-function with a negative coefficient, and the derivative of 
the latter, respectively). 

In conformity with Theorem 1 the admissible solution T* (t), y* (t), zL* ‘(E) is 
the optimal solution for the Example 1 among solutions that by the semiorderliness 
condition z (f) - u (t) > 0 are close to it. 

Note that the proposed here farm of optimality conditions are simpler and more 
convenient than the conventionally used in that they neither stipulate the consideration 
and analysis of discontinuities of Hamiltonian H (t) besides function $ (t), nor the 
introduction of additional constraints in the problem optimality conditions that are 
obtained by the first and second differentiation of functions and define and phase 
constraint z (t> - a (t>>O of the form 

Furthermore they do nut require the introduction of additional conjugate functions or 
measures related to such constraints, and avoid the necessity of determining at the 

phase boundary IlO, III= {t : x* (t) = a (t)} the values of functions + tt1 
and cp (t) by the fairly complex and cumbersome system of equations 

where D, D,, and D, are some determinants. 

6, The singular Optimal problem. Problem 3. using 
condition 

max {yz (T): d x/dt=Ax+Bu-ta, x(O)=c, Pu>b, Qz>d} 

in which for any x (t) and u (8) from the admissible class of vector functions 

A (t)z (E), B (t)u (t), a (t) E J%: 10, TI 

P (t)u (t), b (t) E Ls,/ [O, 2’1; Q @)s (9, d, @> E &pm [o, TJ 

(-I< si < 0, mj > 0) 

determine on segment [O, 2’1 functions x (t} E Ln,@n IO, T1 and u (4 E. 

.Lk,pk [O, 371 , where 1 < p < +m, ni > 0, --1 < i<j < 0 and function 
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x (0 is continuous in the neighborhoods of points t = 0 and t = T. 
The equation dx / dt = Ax + Bu + a is to be understood in the defined 

above generalized sense. The inequality h (t) = Pu - b > 0 in which 
h (t) E Ls,/ [O, Tl is also to be understood in the above generalized sense, i. e. 

if Si = 0, then hi (t) > 0 in the average in [O, TJ, and if si = -1, then 

for any function u (t) E D1, where u (t) > 0 the inequality (hi (t), u(t)) > 0 
is satisfied. The inequality g(t) = Qx - d > 0 in which g (t) ‘55 &,,pm [O, TJ 
and mi > 0 indicates the pointwise fulfilment of inequality Qix (t) - dS > 0 
when mi > i, and for mi > 1 the latter is in the average satisfied , 

Let us consider some admissible solution x* (t), U* (t) of problem B and as 

previously, determine the sets Oi = {t: @ix*(t) - di (t) = 0) and yi-, vi+, and 

yi” , assuming that {Zi} E 9. We determine for the functions 

g(t)fEE,,[O,T], fl(t)EL;?,iO,Tl (n==&) 

the respective semiorderliness relations g (t) 5 0 and 8 (t) 5 O;using the first of 
these we determine the condition of closeness of the admissible solution 2 (t), u (t) 

of problem B to the admissible solution X* (t), U* (t). 

7. optimalfty conditions for the singular optimal 

problem. T h e o r e m 2. If some admissible solution X* (t), u* (t) 

of problem B there exists funCtiOIU 

9 (t) E L,;s+e [O, TJ, E (t) E L:,, IO, Tl 

qqEL;:q Kh Tl (Q== &) 

such that function 9 (t) is regular and continuous in the neighborhood of points 
t = 0 and t = T, and functions 4 (t), e (t), and 6 (t) satisfy the system 

d$ldt+qA+@Q=O, q(T)=?, +B+sP=O 

e (t) > 0, + (t) > 0, e (t) (Pu* (t) - b) = 0 

6 (t) (Qx* (t) - d) = 0 

then X* (t), u* (t) is the optimal solution of problem B among the admissible 
solutions of that problem that are close to x* (t), u* (t) with respect to the semi- 

orderliness Qx - d > 0. 
The proof of Theorem 2 follows exactly that of Theorem 1. 

E x 8 m P 1 e 2, Using condition 
14 

(5 

@Y mar a (2) u (z) dz: dz2 = u (x)9 Y (0) = 0, 
0 
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CL (cc) = 2 13 - 4 1 -5, a(5)=5--2~s--2p 

b (5) = 14 - I + 2 (z - 12)2, c (r) = 5 - 1/6 1 I - 4 1 - 1/41 s - 10 1 

determine on segment [O, 141 Y (~1 and u (2) I 
An example of the application of this method in mechanics is the problem of det- 

ermining the optimal profile of a shell with nonpositive curvature, covering object 
A, with phase constraints, using the curvature weighted mean. 

We shall show that the admissible solution y* (z) = 7 - 1 x - 7 1, U* (t) = -2ij 

(z - 7) is the optimal one for this example (see Fig. 2, where p denotes the 6- 
function with a negative coefficient). 

The optimality problem in this example evidently reduces to problem b, 
The conjugate system is of the form 

dx2 =s(x)--hx)--((5), $(0)=$(14)=~I ~0 
x=14 

qJ (5) = e (4 - a (4, 6 (I) 2 0, a (z) 5 0, p (x) gL. 0 

& (4 > 0, E (I) u* (x) = 0, a (x)(y* (I) - a (x)) = 0 

p (NY* (4 - b (4) = 0, @ WY* (4 - c (0) = 0 

Since the ec&ralities Y* (5) = a (x), Y* (2) = b (x), and Y* (5) = c (5) are 
only valid at points x = 2, x = 4.2, and x = IO, respectively, at the remaining 

points S$ I dxa = 0 ? and, since u* (2) # 0 only at point I = 7, hence 

e (7) = 0. 
We select 4 (5) = “/2 5 for .z fz 10, 21, 9 (I) = 13 - 2x for x E [2, IO], 

21’ (5) = ‘/a (x - 12) for r E [IO, 121, and ‘II, (2) = 0 for 5 E [12, 141, 

and obtain the inequalities 

e (5) = 21, (z) + 01 (I) > 0, h (2) = 13/z 6 (z - 2) > 0 

6 (5) = 11/p (5 - lO)>O, p (I) = ‘jz 6 (x - 12) > 0 

and the equality e (7) = 0, which by Theorem 2 proves the optimality of solution 
Y* (I), u* (x) (see Fig. 3). 

f2 
0 

4 8 x 4 8 t.. .x 
Fig. 2 Fig. 3 
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This example shows that in many optimality problems which, in classical formula- 
tion do not have optimal solutions, may have such solutions with entirely real mechan- 
ical mean@ in the generalized formulation. It also shows that in the considered above 

formulation of the optimization problem no assumption is made about any intial dislo- 

cation or the quantity of control function singularities. 

a. G o n c 1 u d i n g Z e m a r k 8. The scheme for investigating solutions 

of oppmization problem proposed in the present paper makes possible the follow%. 

1. Elimination of the restrictive consideration of the independent variable as the 
phase variable. 

z”. Analyze problems in which control functions belong to spaces L, or even. 

3”. Derive conjugate systems without introducing additional constraints that are 

due to the differentiation of phase constraints, which considerably widens the dimension 
of the problem which results in the necessity to consider a fairly complex problem of 

variable structure [ 91. 
4”. The admission of cases in which the basic conjugate function $ (t)may vanish 

at the phase boundary, which eliminates the additional integration of the conjugate 

system of equations at the phase boundary [8]. 
5’. To investigate besides the considered here and in [6] sufficient conditions of 

optimality, also, the necessary conditions, including the following complex and gener- 
alized CASTS: 

a) in the presence of phase constraints of general form (*) and 
b) for problems of optimization with distributed parameters (problems with differen- 

tial equations in partialderivatives [7, lo]. 
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