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sufficient conditions of optimality in problems of the theory of optimal proc-
esses with phase constraints are formulated and proved. (see [1,2}). The
problem of optimization is analyzed in the regular and singular cases in which
control functions are expressed in terms of classical and generalized, in the
meaning of Sobolev-Schwartz functions [3-5], respectively, Optimality cond-
itions are formulated using systems of conjugate functions that also belong to
certain classes of functions generalized in the meaning of Sobolev -Schwartz
6,7

The latter makes it possible to obtain new forms of definition for conjugate
functions and to formulate conditions of discontinuity, and also to extend

the class of optimization problems and to simplify the class of conjugate func-
tions [8-10].

Examples are given from the field of space navigation and of the theory of
shells, which illustrate the distinctive feactures of the proposed approach [11],

l, Theregularoptimal problem. Problem A, Determine

the n- and k-dimensional vector functions (columns) z (f) and u (f) along segment
[0, T] that satisfy the condition

max{vx(T):—'é—jzAx—i—Bu—}-a, z(0)=¢, Pu>b, Qx}d}

where ¥ and ¢ are constant 7~ dimensional (row, column)vectors;2, b and d are n-,
s-, and m-dimensional vector functions (columns), and 4, B, P,and Q are matrix
functions of ¢ in [0, T'] respectively, ofordess n X n, n X k,s X &,

and
m X n.

Let n represent an n-dimensional vector with integral nonnegative components n;,
and p be a number or a symbol that satisfies the condition 1<p < +o00.
We introduce in the analysis the space L7 , [0, T] of vector functions z (f) of
dimension r, each of whose components in measurable in [0, 7] and has the n; -th
derivative generalized in Sobolev's meaning and belonging to L ,, (0, T).

We seek the solution Z (!) and u (f) of problem 4 in the classz (f) & Ln
[0, 71, u () = Ly p 10, T1 where n; > 1, and k; = 0,and assume
that for any such z (f) and u (f) the inclusions

A@z @), B@u®, a@)eLizlo, T
P@u®, besLi, 0, T Q@®z(t), d(t)e L, (0, T

659
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e=(1,1,...,1), =0, m;>1
are valid,
We assume that the equation dx / dt = Az -+ By + a and the inequality Pa

> b are on the average satisfied,
Let us consider

2 The space of generalized functionsy, '
of dimension n with infinitely differ-

space D of vector functions (columns) v (f)

entiable components v; (), that vanish in some neighborhoods of points t =0
and t = T.

Let n be a vector of dimension n with integral components n;  and 1 <

< +oo, We denote by Ln , [0, T]the space of generalized vector functions

(t) the space of linear functionals (9 (), v () determinate in D,  and

represented in the form

(p(t),v(t))~2(5 (t)v; (¢) dt -+ ZST

=1 0

Qi (t —; vi (t) dt)

[0, T whenn; > 0,

where ¢;° (t) & L, (0, T) when nl\()' (t)EL i
¢/ () & L, (0, T) when'n; << 0, and g (t)wowhen n; > 0.

3, Properties of generalized functions,
1, o e Ly, [0, TT and ¢y (¢) = L%, [0, T1, then the sumg (t) +

12 (t) = LTSI,P [0, T1, where $; > max {n” l} \ is determined,
2, i e()e=Lr, [0, Tl and 4 (f) 1is a matrix function of order n X k
then the product ¢ ()4 (1) = Lf

whose components are  a;; (t) = C* [0, T1,
{0, T1, where k; > min; {n;}, is determined as

(@ (A @), v () = (9 (1), A )V ()

3 1 ¢()e LY, 10, T], then the derivative do (¢) / dt = Ln; [0, T1
is determined as
(dCP Et) , U(t)) ( (t) dv (t))
4", Each functional ( (t), v(f)) that determines @(f) = L2 [0, 7T is

represented in the form of the sum

(@ (t), v (1)) g. ) vil2))
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of functionals (¢; (t), v; (f)) that determine 9; () = L;‘fp [0, T'] and represent
the i-th coordinates ¢ ().

5 . Each function ¢ (f) & Ly, [0, 71, where min; {n;} = np <0, is
represented by the sum of the regular @” (t) andsingular ¢° () components of
@ (), ie @ ()= ¢" () -+ ¢° (). Each coordinate  @; (¢) of
the regular component " (f) is of the form

(@™ () vit) = | @2 (D vi () dt

Sty

and on the average can be identified with function ¢;(® (f) of that formula, while
each coordinate ¢;° (f) of the singular component ¢° (f)  can be represented
for n;, <0 in the form

-n

d i
ar

T
(%mem:S®M) by (t) dt

14
D (1) =i () — [ o T e+
0

i t

077 (L et @y @™

0 0

2nd(3e czz’onsidered as the n;-th generalized derivative of function (—1)™ @; (¢) &
D ’

6. I o)== Lnp [0, T and u(t) = Ln, [0, T], wheren + m >
©,...,0,1<p< +oo and g = p/ (p — 1), the product ¢ (2)u ()
e L7, [0, T, where n° = min {min; {r;}, min; {m;}}, is determined
in the form

n

utyve)= 2 (@O.ubve)+

i=1(m;>>0)

D (@, e ()
i=1(in;<0)

7, If ¢ ()= Lp 10, TT and u (1) = L7, [0, TI, wheren + m =

e, 1< p<{+ooand g=p/(p—1), thederivative(d/ dt). (¢ (H)u (2))

e LYt [0, 7]  with the properties
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du (t)

a0 Ou ) =280 0 () 4 (1) L
is determined.

4, Semiorderlinessof generalized functions, Letus
consider in [0, 7'} n closed sets ©;, We assume that the totality of sets {©; }belongs to
class Q.le. (5} e=Q if a) there exists an & > 0 such that for any | &= {1,

©» n}  theinclusion o,  [e, T — el isvalid; b) forany; = {1, ., ., n)
the internal part of set ®;, 1i.e., w; = int ®; represents a finite number of isolated
intervals, and c) the complement o; in ©;, i.e. Vi = 0; \ 0 can be
represented in the foorm Vi = Vi~ U V:* |J v:°, where ¥;” and y;* are sets of the
left- and right- hand ends of intervals belonging to ¢;, and v;° is the set consist-
ing of a finite number of points isolated from ®; .

In the space Ly , [0, 7T of the generalized functions P (£). we introduce, using
the set {w;} & Q the relation of semiorderliness ¢ (t) >> 0, and assume  that
¢ (f) > 0 if the following conditions are satisfied.

Foranyi & {1, ..., n}, for which n; >0, the inequality ¢,° (t) > 0 is
validin [0, 7] in the average when »; = () and pointwise when n, > 0,

Forany iec= {1, ..., n}, for which #»; > 2 and for any ie{t,.. .
— 1} the inequalities
, d
(— 1) o (Pz (t) v el ) > 0 in "
1+ (— 1)) 5 (FIO)(t) 04 v
are valid »
Forany ie{1,...,n}, forwhich n, <0, anyke={1,... . ““'ni},

and any function p () = LI,Kq (o, 71, . and g=rp / (p — 1) thatsatisfy  the
relation (t) > o in thatspace, the inequality

T k
g (pi"(t)-;%v(t)dt>0

]

is valid.
Let us point out some of the properties of introduced relation,
. @@)e=Lh, [0, T] and u(t)e L7, 10, T), where n + m>
©,...,0), 1<p<+oo, g=p/(@—1), e >0 andu ()

> 0 r then({: (t)u (t)

T g%, Let §h (t — 1) E Lk’“1 [0, T'1represent the k-th derivative of the & -
function at point <. Then the relation ad® (¢ — ) > 0, where ¢ = const,
means that o« > 0, when 4 iseven o« >> 0 when Tey, a< 0

when 1 p+,and o =0 when ¢ °, if k is odd.

5, Conditions of optimality fortheregularoptima-
11ty problem, Letusconsider some admissible solutions z* (1), u* (t)of
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problem A, which we shall use for determining the totality of sets {5;}, where i =
{1....,m}, intheformg; = {t : Q; ()z* () — d; () = 0}, where Q, (t)z*
(&) and d; (t) are the i-th components of vector functions Q (H)z* (t) and d (1),
The totality of sets {51} is assumed to belong to the  class, Using the descri-
bed above procedure we introduce the semiorderliness relations g(#) >0 and
9 (f) > 0 , respectively, for thespaces L3 ; [0, T1 and L7, (0, T1, where
g=p/(p—1) . Noting that the admissible solutions z* (¢) and u* ()
satisfy the relation Q (¢)z* (¢) > d (t), we can say that the admissible solution
z(t), u(t) of problem 4 is close to the admissible solution  x* (2), u* (£) with
respect to semiorderliness Qz > d, if Q(f) = () > d (3).

Theorem 1, If forsome admisible solution z* (f), u* (f) of problem 4
there exist functions

Y e L0, T, e@®e L3 10, T

Y(t)e Lty 10, T] ( = ;{‘T)

such that function v (f) is regular and continuous in the neighborhoods of points
t =0 and ¢ = T, and functions ¢ (£), & (), and 9 (£) satisfy system

dp/dt +pA +9Q =0, $(T) =y, $B+ &P =0
e>0, 0(1)>0, e(Pu*t —b) =0, ¢ (Qz*—d) =0

then z* (), u* (f) is the optimal solution among the admissible solutions of problem
A that are close to  z* (), u* (f) with respect to the semiorderliness Qr > d.

Proof, Lletusassume that an admissible solution Z (), % (&) which satisfies
the inequality % (T) — y2* (T) = € > 0 exists in the neighborhood of sd ution
x* (f), uXt) admissible with respect to the semiorderliness Qx > d . For functions

Y (&) = Lot [0, T1 and z (f) = z (t) — z* (t) = Ly, [0, T the following
product is determined:

d nk .
— Xm0, (% = min (- )

Because Y (£) satisfies the equation —dy/ dt = P4 + 80 this
product is equal to PAZ -+ 0Qz, which means that the equality '
d
— "?;f— T = PAZ + 90z

is valid »
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Since

WB+eP =0, e(Pu* —b) =0, ¢ (Qz*—d) =0
dz/dt = Az + Bi (3 (¢) = u () — u* (t)

that equality assumes the form

— d/dt Wz) = e (Pu — b) + 9 (Qz — d)

Because & (£) >0, Pu+b>0,9 (1) >0,0z — d > 0, the latter equal-
ity generates the inequality (d / dt) ($z) <C 0.

In conformity with conditions of the theorem function ¥ (£) is regular in the neigh-
borhoods 10, o,] and (T — o, T, where o, > 0. We take an
arbitrary ¢ &= (0, ¢,] and construct function g (2) &= D, of the form y; (f) =
0 in [0,¢/2] and (I —0/2,Tly ps(t) =1 in (6, T — ol
ve (t) =n 2t/ o —1) in [0/2, 0],and o . —
in [T — 0,(T — 0/2]).,where W w@ =n @I —0/0—1)

% T
"(T):'j;iTSeXP (——t—(-l—{_:)—)dt, M:Sexp (— ﬁTE—tT)dt>O
’I'hen 0 0
. ) n ({ T——g/‘z\ . ) dvo
) = — ; (63/2 - TL )i () () 52 dt

Functions { (£) and Z (f) are continuous in the neighborhood of points ¢ = Q0 and
t = T, hence there exists forany p > 0 a0, > 0 such that

B Oz () = Oz O +E@D, [E@]|<p ViS00l
B Oz ) =0 (D5 (D + L@, | tO]<p Viell —oy, T]

We select 0 = min {0, 05} and obtain the inequality

— 2 (%&£ (0)2: (0) — 9 (1) 2: (1)) ~
i=1
n [ T—o 2
Y (sogoema+ |t o) <o
i=1 0,2 T-—-0
which owing to  z (0) = 0 and ¥ (T) = ¥ implies the inequality

n T-—0/2

()< Y 5 EOgroe®dt+ | L0 d)

i=1 02  ha
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Taking into account the estimates

|=nm|< |meo|<ty

and selecting u = Me%e / (4n), we obtain the inequality WZ (T) < e/2 which
contradicts the previously assumed inequality yz (7) = & > 0, The theorem is
proved,

Example 1, Determine onsegment [0, 12] =z (t) = L 2[0,12}, y(t) =
L 100, 12] and u(f) e L;," [0, 12] which satisfy the condition

12

: .
max{\stt: Gr =y =—w 2O =0 yO=—2 lu|<1, a<an)
0

a(t) = (t —10)3(3t — 14) / 64 — 2

Let us consider the following admissible solutions: u* (¢) = 1 in the intervals (2, 4)
and (8, 10); u* () = —1 in (0, 2), (4, 8) and (11, 12), and u* (f) = —(d?/ dt?) a (¢)
in (10, 11). For thestated problem and admissible solution the combination of point

t = 6 and segment [10, 11] represent the set © ,while the separate points ¢ = 10,
t = 1,and ¢ = 6 represent, respectively, the sets 7> ¥ and v°.

z Conditiong (f) = a (1) —z () >
o I(/ 0 implies that
~2 aQ
-4 ‘% (1) >0, dt g (1,10
g (t)l
dt t=11%
2
4
_02 The classes of conjugate functions
are defined as follows:
[; u ¢ () = Lot 10,12],
-1 VY (f) = Ly,9° [0,12]
56 4 7 ‘ &y (t), &g (t) = Ll.zo [0112]1
12 ¥ () = Lo 10,12]
| N N\
_g and the conjugate system of conditions
) A for these functions are of the form
J [ ~ | do/dt =9 () —1, dp/dt = —g (),
_137 g~ ~J p(12)=0, $(12)=0
Y (@) = e (&) — e (2),
l" *r & (1 + u* (1)) = 0,
y ) RESE & ()1 — u* (1) = 0
oS © (e () — % () = 0, & () >0
LA 8 ¢ e (>0, 8()>0

Fig,1
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If function & (1) is of the form 9 () = 8* () + @b (¢t —v) + B§' (¢ — 1), where
O* (f) = L,,,° [0, 12] and T =¥, then condition @ (f) > 0 means that: 9* (£) > 0;
>0, andB >0 when T=10, p<CO when T—*“.andﬁ"owhenr-_ﬁ

Using the notation Il Bpy=0¢—a)—06@—p) swhere O (f) is the character-
istic function of set {#* ¢ > 0}, we formulate the solution of the conjugate  system
$(f) = Tt (1) + 68 (¢ —6) + 8 (¢ — 10) + 8 (¢ — 1) — 1/8" (£ — 11)  as follows:
¢()=38—¢ in 0,6} ()= 9—t in (6,10}, ¢ (=0 in (10, 11),
12—t — 1,8 (¢ —1) inl11, 121, (O =229 — 12—, inl0, 6), () = 0
in (10,41), ¢ () = Yo (¢ —12)* in (11, 12) (see Fig, 1, where «, B, and v denote
the ©&-function, the  6-function with a negative coefficient, and the derivative of
the latter, respectively).

In conformity with Theorem 1 the admissible solution =¥ (¢), y* (£), u* () is
the optimal solution for the Example 1 among solutions that by the semiorderliness
condition z (£) — a (f) > 0 are close to it.

Note that the proposed here form of optimality conditions are simpler and  more
convenient than the conventionally used in that they neither stipulate the consideration
and analysis of discontinuities of Hamiltonian H (f) besides function ¥ (£)y nor the
introduction of additional constraints in the problem optimality conditions that are
obtained by the first and second differentiation of functions and define and phase
constraint x (¢) — a (t)>>0 of the form

YO>S0 ), u(t)< —-sa()

Furthermore they do not require the introduction of additional conjugate functions or
measures related to such constraints, and avoid the necessity of determining at  the
phase boundary {10, 11] = {¢ : z* (t) = a (t)}  the values of functions P (£)
and ¢ (£) by the fairly complex and cumbersome system of equations

do oH , 1 8H ay aH 1 dH

— . AL

at . 9z D ou %@ dt oy Dax Y

where D, D, and D, are some determinants,

6 The singularoptimal problem. Problem B, Using
condition

max {yz (7): dz/dt = Az + Bu +a, z(0)=c, Pu>b, Qx> d)
in which for any Z (f) and u (f) from the admissible class of vector functions

A@®zx @), B@OuE),a@)s Lny [0, 7]
Pu@, b e L, 0,15 Q@@ d¢t)E Ly 0, Tj
(1< <0, m;>0)

determine on segment [0, 71 functions x (f) & L, [0, T1 and w () =
Lk,pk [01 T] ? where 1 < D <. +°°7 n; .> O’ —1 i ki \\i 0 and function
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z(t) is continuous in the neighborhoods of points ¢ = 0  and t=T.

The equation dz/ dt = Az + Bu + a is to be understood in the defined
above generalized sense. The inequality (t) =Pu—>b>0 in which
h () & L,,2 [0, T1 s also to be understood in the above generalized sense, i.e.
if s; =0, then A; (/) >> 0 inthe averagein [0, I, andifs;, = —1,then
for any function v (f) & D,, where v (£) > 0 the inequality (k; (£),v(¥)) >0
is satisfied, The inequality g (f) = Qr —d>( in which g ({) & L,, ,» [0, TT
and ™m; >0 indicates the pointwise fulfilment of inequality Q;z @t —d; >0
when m; >1, and for m; >1 the latter is in the average satisfied,

Let us consider some admissible solution z* (f), u* (¢) of problem B and as
previously, determine the sets®;, = {¢: Qz*(t) —d; () =0} and y,7,7;*, and
vi® ,assuming that {®;} & Q. We determine for the functions

g I, 10.T), (S L1071 (4= 527)
the respective semiorderliness relations g (f) 50 and B() > 0;using the first of
these we determine the condition of closeness of the admissible solution Z (), u (2)
of problem B to the admissible solution =* (¢), u* (¢).

7, Optimality conditions for the singularoptimal

problem, Theorem 2, If some admissible solution z* (£), u* (f)
of problem B there exists functions

b @) = L0, T, &) & L3, [0, T

such that function P (£) is regular and continuous in the neighborhood of points

t =0 and ¢t= T, and functions P (), & (£), and & () satisfy the system
dp/dt +vA +8Q =0, v(I)=7v, $B+eP =0
e)>0, @) >0, e(t)(Pu*(t) —0) =0
O () (Qz* (1) —d) =0

then z* (f), u* (f) is the optimal solution of problem B among the admissible

solutions of that problem that are close to z* (f), u* (¢) with respect to the semi-

orderliness Qz — d > 0.
The proof of Theorem 2 follows exactly that of Theorem 1,

Example 2, Using condition
14

d?
max{ga(z)u(z)dz: E%:u(x), y(0)=0,
0

Y@ <0, y@<a@, y@D<bE), ¥ (@) >c(2)}
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a@)=2{z—4]|—5, axy=z—2]|z—2J

b(@) =1 —z4+2@&—12)2, c{x)=5—1Ys|lz—4|— Y,z — 10]

determine on segment [0, 14] y (x) and u (#) .
An example of the application of this method in mechanics is the problem of det-

ermining the optimal profile of a shell with nonpositive curvature, covering object
A, with phase constraints, using the curvature weighted mean,

We shall show that the admissible solution y* (z) =7 — |2 — 7|, w* (f) = —2§
(x — 7) is the optimal one for this example (see Fig, 2, where B denotes the &~
function with a negative coefficient),

The optimality problem in this example evidently reduces to problem B,

The conjugate system is of the form

d d
=0 i@ —n@, PO = b =]

Y@ =¢e@@—a(), B@@>0, A(x>0, px)>0
e(x) >0, e u*(z) =0, AM@y*(2) —a(z) =0
p(@)y* (2) — b (2) =0, ¥ (2)y* (x) —c(2)) =0

Since the equalities ¥* (®) = a(z), y* (z) = b (), and ¥* (x) = c(2) are
only valid at points * = 2, z = 12, and = = 10, respectively, at the remaining
points d%p/dz? = 0, and, since u*(z) 30 only at point =7, hence
e (7) = 0.

We select V() = %2 for 2 = [0, 2], VP (2) =13 — 2=z for =z = [2, 10],
P (2) = 7y (x — 12)  for ze=[10, 12], and v (x) = 0 for z e (12, 14],
and obtain the inequalities

e@ =9 @ +a@>0, A =38(z—2)>0
B (x) = b (z — 10)>0, p(z)="p8(z—12)>0

and the equality & (7) = 0, which by Theorem 2 proves the optimality of solution
y* (z), u* (z) (seeFig, 3),

7 y g "
0 ~

0 7 -7 \/
- E A

4 A8 p

152 ol A% IS E

0 L oLl 7 il el
-5 15 ‘

) Vg L‘/
0 /L i’/ Ll 1% 0 5 " /
4 8 7 =z /] 8 Z <z
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This example shows that in many optimality problems which, in classical formula-
tion do not have optimal solutions, may have such solutions with entirely real mechan~
ical meaning in the generalized formulation. It also shows that in the considered above
formulation of the optimization problem no assumption is made about any intial dislo-
cation or the quantity of control function singularities,

8 Concluding remarks. The scheme for investigating solutions
of optimization problem proposed in the present paper makes possible the following,
1, Elimination of the restrictive consideration of the independent variable as the

phase variable, .
9°, Analyze problems in which control functions belong to spaces L, oreven.

D’ [5]

3°, Derive conjugate systems without introducing additional constraints that are
due to the differentiation of phase constraints, which considerably widens the dimension
of the problem which results in the necessity to consider a fairly complex problem of
variable structure [9].

4°. The admission of cases in which the basic conjugate function VP (!)may vanish
at the phase boundary, which eliminates the additional integration of the conjugate
system of equations at the phase boundary [8].

5°, To investigate besides the considered here and in [6] sufficient conditions of
optimality, also, the necessary conditions, including the following complex and gener-
alized cases:

a) in the presence of phase constraints of general form (*) and

b) for problems of optimization with distributed parameters (problems with differen-
tial equations in partialderivatives [7,10].
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